Excitotoxicidad y muerte neuronal en la epilepsia

¹ Departamento de Inmunoquímica, Centro Internacional de Restauración Neurológica, Cirén Ave. 25, No. 15805 e/ 158 y 160 Playa, CP 11300, La Habana, Cuba ² Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS México ³ Departamento de Neurofisiología, Cirén ⁴ Servicio de Neurocirugía, Cirén ⁵ Laboratorio Farmacobiología, Centro de Investigación y de Estudios Avanzados, Cinvestav Sede Sur, DF, México

E-mail: lourdes.lorigados@infomed.sld.cu

RESUMEN

La epilepsia es una afección neurológica de evolución crónica, recurrente, casi siempre progresiva, que afecta del 1 al 2 % de la población mundial. Modelos experimentales y estudios de imágenes neurológicas de pacientes con este padecimiento muestran que las crisis recurrentes provocan estrés oxidativo, relacionado fundamentalmente con la excitabilidad neuronal. La estimulación excesiva de los receptores de glutamato induce neurotoxicidad, un proceso que se ha definido como excitotoxicidad. Se considera que este puede ser el principal mecanismo de muerte celular en numerosas afecciones del sistema nervioso central, incluida la epilepsia. Desde los años 70 se han estudiado con profundidad las vías de señalización, los mecanismos moleculares y los sitios de acción relacionados con la excitotoxicidad; aunque de forma muy limitada en las enfermedades del sistema nervioso central. En particular, deberán evaluarse con especial cuidado la función crucial de la muerte neuronal y los mecanismos que se potencian con la sobreactivación de los receptores de glutamato, principalmente los relativos a las enfermedades neurológicas, con el fin de intervenir de manera oportuna para retardar el desarrollo de estas afecciones neurológicas. Se repasan las evidencias clínicas y experimentales sobre las alteraciones del sistema glutamatérgico, las vías de muerte celular, la activación de las caspasas y de la familia de genes Bcl-2 involucrados, como moduladores de la muerte celular en la epilepsia. Tales hallazgos sustentan que en la epilepsia farmacorresistente convergen procesos excitotóxicos y de muerte neuronal apoptótica y necrótica.

Palabras clave: excitotoxicidad, apoptosis, necrosis, epilepsia

Biotecnología Aplicada 2013;30:1-8

ABSTRACT

Excitotoxicity and neuronal death in epilepsy. Epilepsy is a recurrent, often progressive neurological disorder with a chronic evolution, affecting 1 to 2 % of the world population. Research with experimental models and imaging analysis of diseased patients have been used to show that recurrent episodes produce oxidative stress, most of which is related to neuronal excitability phenomena. It is known that the excessive stimulation of glutamate receptors results in neurotoxicity; a process that, under the denomination of excitotoxicity, is thought to constitute the principal cellular death mechanism behind different disorders of the central nervous system, including epilepsy. Paradoxically, although the signaling pathways, molecular mechanisms and sites of action of excitotoxicity have received considerable attention since the 1970s, little is known about their relevance to CNS disorders. Further detail is necessary about the fundamental role of neuronal death and the mechanisms, particularly those relevant to neurological pathogenesis, that are engaged whenever glutamate receptors are excessively stimulated, as the results would aid considerably the development of timely clinical interventions delaying the evolution of these disorders. We review clinical and experimental data on the relevant alterations of the glutamatergic system, cell death pathways, and the activation of caspases and members of the Bcl-2 gene family involved in the process as modulators of cell death during epilepsy. The findings support the hypothesis that excitotoxic processes as well as both apoptotic and necrotic neuronal cell death phenomena converge in drug-resistant epilepsy.

solo por las propiedades de señalización atribuidas a

los niveles y la actividad del glutamato y su receptor,

sino también por la muerte celular excitotóxica [2]. Ini-

cialmente se describió que la muerte celular inducida

por excitotoxicidad se caracteriza por el aumento del

Keywords: excitotoxicity, apoptosis, necrosis, epilepsy

Introducción

La excitotoxicidad mediada por el receptor de glutamato ejerce una función importante en el desarrollo neural, la diferenciación y la plasticidad sinápticas [1, 2]. Este proceso se considera el principal mecanismo de la muerte celular en numerosas enfermedades del sistema nervioso central (SNC) como el trauma cerebral, los desórdenes neurodegenerativos y la epilepsia [3-6].

En el SNC de los mamíferos, el glutamato es el neurotransmisor excitador por excelencia. La regulación de la neurotransmisión glutamatérgica es crítica, no

el trauma cerebral, y la epilepsia [3-6]. lutamato es el neucia. La regulación gica es crítica, no volumen de la célula, la vacuolización del citoplasma y la ruptura de las membranas, características que apuntan a un mecanismo de muerte celular necrótica [7-10]. Luego se definió que la degradación internucleosomal del ADN y la activación de las caspasas son 1. Yang JL, Sykora P, Wilson DM, 3rd, Mattson MP, Bohr VA. The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. Mech Ageing Dev. 2011;132(8-9): 405-11.

2. Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010; 15(11):1382-402. indicativas de muerte neuronal apoptótica [11-13]. Y recientemente se sugiere que la autofagia puede ser un mecanismo de muerte celular no apoptótica inducida por excitotoxicidad, lo que revela que la autofagia es una estrategia de supervivencia ante el estrés [2]. De esta forma, el incremento de la actividad del receptor del glutamato podría inducir la expresión de proteínas proapoptóticas tales como la p53, lo cual provocaría el daño y la muerte neuronales por apoptosis y autofagia [14-16]. La autofagia se activa como respuesta a un daño excitotóxico agudo [17, 18].

A pesar de que se ha estudiado ampliamente la excitotoxicidad en cuanto a sus vías de señalización y acción, aún es muy escaso el conocimiento sobre su función en el SNC, así como sus mecanismos moleculares de acción. No obstante, teniendo en cuenta tales hallazgos se puede considerar que la muerte excitotóxica en el cerebro no es un evento uniforme; más bien es un proceso continuo que va de necrosis a apoptosis y a autofagia. En este trabajo se discuten los mecanismos celulares y moleculares de la excitotoxicidad y su efecto en la muerte neuronal que ocurre en la epilepsia.

Concepto de excitotoxicidad

Diversos hallazgos experimentales y clínicos relacionados con la posible toxicidad de los aminoácidos excitadores han dado lugar a la teoría excitotóxica, que postula que los niveles excesivos de glutamato endógeno o la hipersensibilidad de sus receptores se relacionan con la degeneración neuronal [19]. La excitotoxicidad es el mecanismo que promueve la muerte celular mediante la sobreactivación de los receptores glutamatérgicos o de cualquiera de sus análogos. Esta provoca la entrada excesiva de calcio (Ca2+) a la célula, que es secuestrado por la mitocondria. Ello provoca un incremento del calcio mitocondrial, que provoca la disfunción metabólica, la producción de radicales libres, la activación de proteasas, fosfolipasas, la óxido nítrico sintasa y endonucleasas, y la inhibición de la síntesis de proteínas [20].

La pérdida de la homeostasis del calcio se debe a la saturación de los mecanismos de regulación como la bomba de calcio, el intercambiador sodio/calcio (Na⁺/Ca²⁺) y las proteínas amortiguadoras de calcio. Una vez saturados estos sistemas, la mitocondria captura el exceso de calcio que se acumula en la matriz mitocondrial. Ello induce la despolarización de la membrana mitocondrial por dos mecanismos: el abatimiento parcial del potencial quimiosmótico por la acumulación de cargas positivas en la matriz mitocondrial; y ante una sobrecarga sostenida ocurre una despolarización irreversible por la activación del poro de transición mitocondrial. El colapso del potencial quimiosmótico mitocondrial reduce la síntesis de trifosfato de adenosina (ATP) y la activación del poro de transición, que constituye una vía por donde el calcio retorna al citosol [21, 22]. El aumento sostenido de las concentraciones de calcio promueve la generación de radicales libres, que inducen la peroxidación de lípidos de la membrana, la síntesis de óxido nítrico y la activación de enzimas involucradas en el catabolismo de proteínas, fosfolípidos y ácidos nucleicos. Además, el oxido nítrico puede actuar como mensajero retrógrado y potenciar el efecto excitotóxico del glutamato al aumentar su liberación desde las terminales presinápticas [23] (Figura 1).

Una vía de daño celular es la activación de la óxido nítrico sintasa, cuyo producto reacciona con el superóxido y forma el peroxinitrito. Otra vía es la activación de

Figura 1. Mecanismo de excitotoxicidad. La activación sostenida del receptor N-metil-D aspartato (RNMDA) por concentraciones incrementadas de glutamato (Glu) provoca la entrada masiva de calcio a la célula que activa a las enzimas líticas y la óxido nítrico sintasa (NOS). El daño mitocondrial y el aumento de la concentración de ácido araquidónico es uno de los factores implicados en el incremento de la generación de especies reactivas de oxígeno, que conducen a la muerte neuronal provocada por el daño a las biomoléculas y la activación de programas de muerte apoptóticos. El déficit energético contribuye a la perpetuación del proceso degenerativo porque favorece la despolarización de la membrana por el déficit en el funcionamiento de la bomba sodio/potasio (Na/K ATPasa) y mantiene el estado activo del RNMDA. Esto sensibiliza a la célula a la aferencia glutamatérgica normal procedente de la corteza cerebral.

la poli-adenosina difosfato ribosa-polimerasa (PARP), como respuesta al daño del ADN mediado por los radicales libres [24, 25].

Excitotoxicidad y epilepsia

Algunas evidencias sustentan la hipótesis de que los cambios neurodegenerativos asociados con la epilepsia humana resultan de la actividad de las descargas persistentes en la vía del glutamato. El mecanismo es relativamente simple: la liberación del exceso de glutamato provoca la despolarización y repolarización repetitiva de las terminales del glutamato, lo que conduce a su concentración tóxica, y finalmente origina la degeneración excitotóxica de la neurona possináptica [26, 27].

Estudios de microdiálisis en humanos y modelos animales documentan la asociación entre la actividad convulsiva prolongada y la duración del estado epiléptico por la elevación significativa del glutamato [28]. Se conoce que la sobrexcitación de las neuronas por glutamato puede provocar descargas epilépticas y que la aplicación directa de glutamato en la amígdala induce un efecto similar al de la activación propagada [29]; mientras que el empleo de antagonistas del receptor ácidoα-amino-3-hidroxi-5-metil-4-isoxazolpropiónico 3. Severino PC, Muller Gdo A, Vandresen-Filho S, Tasca CI. Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci. 2011;89(15-16):570-6.

4. Araujo IM, Carreira BP, Carvalho CM, Carvalho AP. Calpains and delayed calcium deregulation in excitotoxicity. Neurochem Res. 2010; 35(12):1966-9.

5. Wang Y, Denisova JV, Kang KS, Fontes JD, Zhu BT, Belousov AB. Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke. J Neurophysiol. 2010;104(6):3551-6.

6. Farooqui AA, Ong WY, Horrocks LA. Glutamate receptors and their association with other neurochemical parameters in excitotoxicity. In: Farooqui AA, Ong WY, Horrocks LA, editors. Neurochemical aspects of excitotoxicity. New York: Springer; 2008. p. 105-36. retarda el desarrollo de la activación propagada amigdalina en ratones [30].

La activación del receptor de N-metil-D-aspartato media la muerte celular durante el estado epiléptico [31], y el uso de un antagonista de este receptor, el MK-801, previene la aparición de las crisis espontáneas en modelos animales [32]. En la epileptogénesis participan los receptores de kainato, especialmente la subunidad GluR6 como inductora [33, 34].

En general, el daño neuronal excitotóxico celular en pacientes epilépticos es mediado por la entrada excesiva de calcio en las células durante las convulsiones [35]. Los niveles elevados de calcio desatan una secuencia de eventos como la activación de la óxido nítrico sintasa, que interfiere con el metabolismo oxidativo y genera radicales libres y daño de la membrana neuronal; igualmente se activan las procaspasas, y ocurre la muerte neuronal, ya sea por necrosis, apoptosis o autofagia.

Excitotoxicidad en modelos experimentales de epilepsia

Por las limitaciones para estudiar la epilepsia humana, se han desarrollado modelos experimentales que la asemejan. Sin embargo, aún es imposible evaluar las manifestaciones conductuales, sobre todo la conducta motora.

Estos modelos se clasifican en agudos y crónicos. Los primeros se logran por la aplicación de fármacos convulsivantes o por estimulación eléctrica; los segundos reproducen mejor la fisiopatología de la epilepsia en humanos. Ambos pueden padecer crisis parciales o generalizadas. Sin embargo, debido a que la epilepsia se caracteriza por la recurrencia de manifestaciones ictales, solamente los modelos que reproducen esa condición se consideran verdaderos modelos de epilepsia. El último desafío en cualquier estudio experimental de la epilepsia es determinar cuál de los muchos cambios como respuesta a un daño cerebral está relacionado de forma causal con el subsecuente desarrollo de la epilepsia.

El estrés oxidativo inducido por las crisis recurrentes contribuye grandemente al daño y la muerte celulares. Los radicales libres derivados del estrés oxidativo son componentes de la excitotoxicidad. En parte, ello se sustenta en que las crisis prolongadas inducen daño celular en las macromoléculas y se relacionan sobre todo con la excitabilidad neuronal.

En los modelos animales se han estudiado dos tipos de daño en particular: crisis febriles prolongadas (20 a 30 min) y estado epiléptico prolongado (5 a 8 h). Este último es inducido por la invección sistémica de agonistas colinérgicos (pilocarpina) o por la invección unilateral de agonistas glutamatérgicos en el hipocampo de ratas (ácido kaínico, análogo del glutamato). En los modelos de crisis febriles, hipoxia neonatal y espasmos se ha demostrado que las neuronas en desarrollo son menos vulnerables al daño neuronal y la pérdida celular que las neuronas adultas. Por ejemplo, las neuronas hipocampales de animales cuyos cerebros son inmaduros continúan respondiendo a estímulos sinápticos, y en un ambiente totalmente anóxico se requiere mucho tiempo para destruir los circuitos de manera irreversible [36]. El cerebro inmaduro parece ser también más resistente a los efectos tóxicos del glutamato que el cerebro maduro [37]. Mark et al. [38] demostraron que la cantidad de calcio que entra a una neurona piramidal está directamente relacionada con la edad del individuo: en los tres primeros días de vida, el glutamato incrementa el calcio mínimamente; en cambio, entre los días 21 al 25 ocurre un marcado incremento en el calcio intracelular, aumento del volumen del soma y retracción de las dendritas. Esta resistencia relativa se debe a la menor densidad de las sinapsis activas, al bajo consumo de energía y en general a la relativa inmadurez de las cascadas bioquímicas que llevan a la muerte celular. Por consiguiente, los animales jóvenes son menos vulnerables que los adultos a la pérdida celular después de las crisis epilépticas prolongadas [39-41].

Los modelos de excitotoxicidad en animales adultos más utilizados son el del ácido kaínico y la pilocarpina: modelos de epilepsia del lóbulo temporal, inducidos por la invección unilateral o sistémica de uno de estos compuestos, en dosis convulsionantes que provocan daño excitotóxico en las neuronas piramidales del hipocampo y en la región hilar. El daño depende de la dosis, la especie y la cepa animal; pero el resultado es la muerte de las neuronas en las regiones vulnerables, la proliferación de astrocitos y el aumento de las fibras gliales. Por ese motivo, los modelos de administración sistémica de ácido kaínico o pilocarpina se consideran adecuados para el estudio de las convulsiones tónico-clónicas generalizadas o estado epiléptico, cuyo sustrato neuroanatómico es la esclerosis temporal mesial [42-46].

Uno de los primeros cambios que ocurren después de la administración de ácido kaínico es la inducción de ARN mensajero (ARNm) y la expresión de proteínas de choque térmico de diferentes pesos moleculares (HSP27, HSP70 y HSP72). Esta última se expresa constitutivamente en el cerebro de los mamíferos, y se sobreexpresa en las poblaciones neuronales sensibles del hipocampo [47]. La expresión de estas proteínas parece prevenir el plegamiento anormal de proteínas de nueva síntesis en las poblaciones vulnerables al ácido kaínico. Durante las dos semanas siguientes a la administración, esas proteínas se transportan por el árbol dendrítico y a lo largo de los axones hacia las zonas más distales. La HSP70 y la HSP72 tienen una función protectora, aunque no consiguen rescatar a las células de la muerte excitotóxica. La sobreexpresión de HSP27 y HSP70 in vivo protege del daño excitotóxico [47, 48], mientras que los niveles excesivamente altos de la HSP72 pueden ser nocivos para las células [49-51].

Luego de tres a cinco horas de la invección de ácido kaínico también se induce la síntesis de ARNm y la sobreexpresión de las proteínas cFos y cJun en las regiones vulnerables del hipocampo y en el giro dentado [52]. La inmunorreactividad contra cFos decrece a las seis horas en el giro dentado, pero permanece alta en el hipocampo. Ello sugiere que la muerte celular puede asociarse con los niveles altos de cFos. Además, el incremento prolongado de cFos no tiene un carácter predictivo y no es preciso para que ocurra daño neuronal excitotóxico [53, 54]. También se ha observado un aumento de la expresión de cJun en el hipocampo y en la circunvolución dentada, 24 horas después de las crisis epilépticas. El significado del aumento de los niveles de cJun es contradictorio, ya que se considera marcador de la muerte celular retardada, secundaria a crisis epilépticas, o como posible marcador de supervivencia neuronal frente al daño excitotóxico [52]

Con respecto a la señalización a través de la membrana celular, el activador tisular del plasminógeno 7. Fujikawa DG, Shinmei SS, Cai B. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience. 2000;98(1):41-53.

8. Fujikawa DG, Shinmei SS, Cai B. Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms. Epilepsia. 2000; 41 Suppl 6:S9-13.

9. Ebert U, Brandt C, Loscher W. Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia. 2002;43 Suppl 5:86-95.

10. Kubova H, Druga R, Lukasiuk K, Suchomelova L, Haugvicova R, Jirmanova I, et al. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci. 2001; 21(10):3593-9.

11. Bengzon J, Mohapel P, Ekdahl CT, Lindvall O. Neuronal apoptosis after brief and prolonged seizures. Prog Brain Res. 2002;135:111-9.

12. Henshall DC, Araki T, Schindler CK, Lan JQ, Tiekoter KL, Taki W, et al. Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizureinduced neuronal death. J Neurosci. 2002;22(19):8458-65.

13. Liou AK, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol. 2003;69(2):103-42.

14. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4): 379-87.

15. Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007;28(12):1859-72.

16. Zhang XD, Wang Y, Zhang X, Han R, Wu JC, Liang ZQ, et al. p53 mediates mitochondria dysfunctiontriggered autophagy activation and cell death in rat striatum. Autophagy. 2009;5(3):339-50.

17. Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth KA, Zhang J. Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett. 2007;414(1):57-60.

 Wang Y, Dong XX, Cao Y, Liang ZQ, Han R, Wu JC, et al. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur J Neurosci. 2009; 30(12):2258-70.

19. Olney JW. Excitatory transmitters and epilepsy-related brain damage. Int Rev Neurobiol. 1985;27:337-62.

(tPA), serina proteasa extracelular, parece ser necesario para que ocurra la muerte celular, ya que los ratones nulos para tPA o para plasminógeno son relativamente resistentes al daño excitotóxico. Este efecto parece mediado por la interacción de tPA con laminina, una proteína de la matriz extracelular [55]. También el aumento de la expresión del ligando específico del receptor Fas (FasL) en el hipocampo y en las células granulares del giro dentado, tres horas después de la invección de ácido kaínico, está relacionado con la señalización a través de la membrana celular [56]. Mientras, en esta última región, la expresión de FasL decrece seis horas después de la inyección de ácido kaínico, y la inmunorreactividad contra FasL se mantiene en el hipocampo. Este aspecto es relevante, porque la unión de FasL a Fas activa el dominio de muerte de este último, al que se une el dominio de muerte asociado a Fas (FADD), y a su vez activa la caspasa 8 que actúa sobre las caspasas efectoras, que provocan la muerte por apoptosis. La utilización de ratones transgénicos para Fas aporta datos sustanciales para conocer el papel del sistema Fas/FasL en la señalización de muerte celular excitotóxica [56].

Aún no se ha precisado la función de los miembros de la familia de genes bcl-2. Un estudio preliminar mostró la reducción de la proteína Bcl-2 y el aumento del ARNm para la proteína Bax en el hipocampo de ratones después de la inyección sistémica de ácido kaínico [57]. Estudios más precisos mediante Northern blot han mostrado una inducción del ARNm de la proteína Bax (pero no de las proteínas Bcl-2 y Bcl-x) desde seis a 24 horas en el hipocampo de ratas inyectadas con ácido kaínico. La expresión de las proteínas Bcl-2, Bcl-x y Bax en el hipocampo, analizada mediante Western blot e inmunohistoquímica, es similar en las células destinadas a morir y en las células que sobreviven [58]. Es posible que los efectos de los miembros de la familia Bcl-2 no dependan de cambios globales de las proteínas; pero sí su localización subcelular. La señalización de muerte apoptótica por la vía mitocondrial se desencadena por una unión de la proteína Bax a la membrana mitocondrial y por una liberación de citocromo c al citosol. Esta liberación comprende la unión al factor de activación de proteasas apoptóticas Apaf1 en presencia de ATP y la activación de la caspasa 9, que a su vez activa distintas caspasas efectoras o ejecutoras. El modo en que ocurre la salida del citocromo c de la mitocondria al citosol no está claro, pero parece establecerse una interacción entre Bcl-2, Bcl-x y Bax, y los canales iónicos dependientes de voltaje que controlan la salida del citocromo c. Se ha propuesto que el balance entre Bax y Bcl-2 en la célula es esencial para determinar si una célula experimentará apoptosis [59].

La excitotoxicidad provocada con ácido kaínico por vía intraperitoneal también induce la expresión del ARNm de la caspasa 3 y el aumento de la expresión de procaspasa 3 en algunas neuronas de las regiones vulnerables del hipocampo [60, 61]. Unas pocas neuronas expresan el fragmento activo (escindido) de 17 kDa de la caspasa 3 [62]. Ello indica la participación de la vía de las caspasas en algunas neuronas del hipocampo, lo que revela muerte celular con componente apoptótico en subpoblaciones del hipocampo. Sin embargo, los estudios por Western blot señalan la presencia de bandas de PARP de 89 kDa y de otras de menor tamaño. Esto demuestra que la fragmentación de PARP no ocurre exclusivamente por la activación de las caspasas, sino también por la acción de otras proteasas, lo cual presagia la muerte indiscriminada por necrosis [61].

Como resultado del daño excitotóxico que afecta de manera preferencial las células de la región hilar [63], las fibras musgosas procedentes de las células granulares del giro dentado se desconectan de sus dianas. Esta diferenciación da lugar a la producción de ramificaciones axonales musgosas que progresan en la región supragranular y en toda la capa molecular del giro dentado [64, 65]. Sin embargo, el recrecimiento de las fibras producido por las crisis convulsivas es menos evidente en animales jóvenes [10, 66]. La formación de ramificaciones o racimos se asocia con un incremento de la expresión de la proteína GAP-43 en la capa supragranular durante la primera semana, y en toda la capa molecular a partir de un mes [67]. Se ha detectado el incremento de la expresión de la proteína asociada con los sinaptosomas de 25 kDa (SNAP25) en las neuronas y en la capa molecular del giro dentado, así como en las fibras musgosas del hipocampo en los días siguientes a la lesión excitotóxica por ácido kaínico [68, 69]. Parece probable la intervención de señales tróficas específicas en el desarrollo de estas conexiones aberrantes, aunque todavía es discutible la función de los factores tróficos. El factor neurotrófico derivado de cerebro y el receptor TrkB en las neuronas del giro dentado posiblemente influyen sobre el trofismo de estas células en la construcción de ramificaciones plásticas dirigidas a reinervar zonas destruidas por el ácido kaínico. También se ha sugerido que el factor neurotrófico derivado de cerebro confiere protección al atenuar el estrés oxidativo [70, 71].

Muerte neuronal y epilepsia

La apoptosis es una forma característica de muerte celular, regida por un programa genético común en varios tipos celulares. Usualmente afecta más a células individuales, que a todas las células de un tejido. La condensación del citoplasma y la reducción del volumen celular, acompañado de cambios en la estructura del núcleo, son de los primeros cambios morfológicos que exhiben las células al inicio del proceso apoptótico. La cromatina se condensa y forma cúmulos densos adosados a la membrana, seguido por invaginaciones de la membrana nuclear, y lleva a la fragmentación del núcleo en estructuras membranosas con cantidades variables de cromatina. De manera análoga, la membrana celular presenta invaginaciones que terminan por fragmentar la célula en racimos de vesículas de tamaño variable que contienen orgánulos intactos que no se fusionan con los lisosomas. A estas vesículas se les denominan cuerpos apoptóticos, que rápidamente son fagocitadas por células vecinas. Por lo tanto, una de las consecuencias fisiológicas más relevantes de la muerte neuronal por apoptosis es que no se libera material intracelular al medio intersticial [72].

La muerte neuronal inducida por convulsiones no exceptúa la complejidad molecular de la muerte neuronal por neurodegeneraciones. Hay una gran controversia sobre si la muerte neuronal es apoptótica o necrótica. Basándose en la definición clásica y los criterios morfológicos de la necrosis, esta constituye el mecanismo más frecuente por el que las células del cerebro mueren después de una convulsión [7-10, 13, 73].

Varios autores sustentan que la muerte neuronal inducida por un estado epiléptico no es apoptótica sino necrótica, con la necrosis como mecanismo dominante de muerte celular después de una crisis epiléptica [73, 74]. 20. Haglid KG, Wang S, Qiner Y, Hamberger A. Excitotoxicity. Experimental correlates to human epilepsy. Mol Neurobiol. 1994;9(1-3):259-63.

21. Nicholls DG, Ward MW. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 2000;23(4):166-74.

22. Murchison D, Griffith WH. Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons. Brain Res. 2000;854(1-2):139-51.

 Almeida A, Heales SJ, Bolanos JP, Medina JM. Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res. 1998;790(1-2): 209-16.

24. Olney JW. New insights and new issues in developmental neurotoxicology. Neurotoxicology. 2002;23(6):659-68.

25. Struzynska L. A glutamatergic component of lead toxicity in adult brain: the role of astrocytic glutamate transporters. Neurochem Int. 2009;55(1-3): 151-6.

26. Pereno GL. Fisiopatología de la epilepsia del lóbulo temporal: revisión del proceso de muerte neuronal a la neuroplasticidad. Rev Argentina Cienc Comportamiento. 2010;2(1):46-57.

27. Eid T, Williamson A, Lee TS, Petroff OA, de Lanerolle NC. Glutamate and astrocytes-key players in human mesial temporal lobe epilepsy? Epilepsia. 2008;49 Suppl 2:42-52.

28. Ueda Y, Yokoyama H, Nakajima A, Tokumaru J, Doi T, Mitsuyama Y. Glutamate excess and free radical formation during and following kainic acid-induced status epilepticus. Exp Brain Res. 2002;147(2):219-26.

29. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1-60.

30. Rogawski MA, Kurzman PS, Yamaguchi SI, Li H. Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse. Neuropharmacology. 2001;40(1): 28-35.

31. Deshpande LS, Lou JK, Mian A, Blair RE, Sombati S, Attkisson E, et al. Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: role of NMDA receptor activation and NMDA dependent calcium entry. Eur J Pharmacol. 2008;583(1):73-83.

32. Rice AC, DeLorenzo RJ. NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res. 1998; 782(1-2): 240-7. Sin embargo, se ha demostrado la presencia de un componente apoptótico. Estos estudios se basan en hallazgos bioquímicos que establecen la participación de algunos miembros de la familia del gen Bcl-2 y las caspasas en el proceso de muerte celular después de las convulsiones. Otros factores que sustentan tales hallazgos son la detección de fragmentos múltiples de 180 a 200 pares de bases con activación temprana de endonucleasas y la fragmentación del ADN en células destinadas a morir (originariamente descrita como indicador de apoptosis), la acumulación nuclear de p53 en neuronas vulnerables al ácido kaínico y el aumento de receptores de muerte celular y sus ligandos. Ello evidencia la intervención de mecanismos apoptóticos en el proceso de muerte celular [11-13, 75-78].

Se han descrito alteraciones en la familia de proteínas Bcl-2 y en el corte proteolítico de las procaspasas 1 y 3. Además se han detectado varios marcadores de muerte celular apoptótica en diferentes modelos experimentales de epilepsia: las caspasas se activan por convulsiones así como los receptores de muerte neuronal y las proteínas de la familia del Bcl-2 [62, 76, 78-83]. Los niveles elevados de Bcl-2 en el suero de los pacientes con epilepsia del lóbulo temporal, se relacionan con la duración de la enfermedad, la frecuencia de las crisis y la severidad de la epilepsia [84].

El gen *p53* fue el primer elemento regulador de la apoptosis identificado como dañado por la actividad convulsiva [85]. Se ha descrito su sobreexpresión, tanto de su ARNm como de la proteína, sustentada funcionalmente en que 1) la unión del ADN de p53 ocurre después de las convulsiones [86], y 2) la expresión de Bax aumenta con las convulsiones [57, 87]. Un inhibidor de la síntesis de p53 protege contra la excitotoxicidad provocada por el ácido kaínico [88]. Las neuronas de ratón deficientes del p53 son resistentes a las convulsiones y a la apoptosis inducida por excitotoxinas [89]. No obstante, las consecuencias de las alteraciones en el p53 en la muerte neuronal inducida por convulsiones no están del todo esclarecidas, debido sobre todo a las múltiples vías funcionales en las que el p53 está implicado. En general, los datos apuntan a que las caspasas, el Bcl-2 y el p53 ejercen alguna función después de las convulsiones.

Se ha discutido la clásica división apoptosis y necrosis, procesos que pueden ocurrir de forma independiente, secuencial e incluso simultáneamente [79, 90]; muchas veces determinados por el tipo de estímulo y su intensidad. Se sugiere un modelo que explica la continuidad entre la vía clásica de apoptosis mediada por caspasas y la necrosis o lisis celular [91]. Los pasos intermedios que se plantean son 1) la muerte celular programada, similar a la apoptosis, 2) la muerte celular independiente de las caspasas y 3) la muerte es importante, en especial en el análisis de la muerte celular que ocurre en los procesos neurológicos [92].

Un estudio de nuestro grupo de trabajo en pacientes con epilepsia del lóbulo temporal farmacorresistentes, avala la participación de los dos procesos de muerte neuronal (necrosis y apoptosis). Se evidenció el incremento de la inmunodetección con anexina V y ensayo Túnel en el tejido neocortical (Figura 2). Ello indicó la presencia de un proceso de muerte neuronal en esta área cerebral que podría ser apoptótica, sin descartar la posibilidad de muerte necrótica, ya que el marcador Túnel+ se asocia con ambos tipos de muerte. También valoramos la posibilidad de

Figura 2. Determinación de inmunorreactividad por ensayo Túnel y contra anexina V, en pacientes epilépticos y controles. A) Comparación entre el porcentaje de células inmunorreactivas al ensayo Túnel en la capa IV de la neocorteza de pacientes con epilepsia del lóbulo temporal y un grupo control. El porcentaje de células Tunel + se calculó en relación con el total de células teñidas con yoduro de propidio por milímetro cúbico visualizadas por doble tinción y microscopía confocal (prueba de Mann-Whitney, *** p \leq 0.001). B) Comparación entre el porcentaje de células inmunorreactivas a la anexina V en la capa IV de la neocorteza de pacientes con epilepsia del lóbulo temporal y un grupo control (no epilépticos). El porcentaje de células anexina V + se calculó en relación con el total de células teñidas con yoduro de propidio por milímetro cúbico, visualizadas por doble tinción y microscopía confocal (prueba de Mann-Whitney, *** p \leq 0.01).

una fase intermedia o de continuidad entre ambos tipos de muerte [93]. Adicionalmente, describimos la presencia de un desequilibrio del sistema redox en estos pacientes [94], que explicaría la muerte por disfunción mitocondrial, causada por la despolarización de la membrana mitocondrial que ocasiona la muerte celular. En estudios posteriores por microscopía electrónica en estos tejidos detectamos células tanto en proceso de muerte necrótica como apoptótica (Figura 3). Estas evidencias podrían ayudar en el desarrollo de estrategias neuroprotectoras contra los procesos de muerte celular que se desencadenan por epilepsia.

33. Ullal G, Fahnestock M, Racine R. Time-dependent effect of kainateinduced seizures on glutamate receptor GluR5, GluR6, and GluR7 mRNA and Protein Expression in rat hippocampus. Epilepsia. 2005;46(5):616-23.

34. Vincent P, Mulle C. Kainate receptors in epilepsy and excitotoxicity. Neuroscience. 2009;158(1):309-23.

35. Lado FA, Laureta EC, Moshe SL. Seizure-induced hippocampal damage in the mature and immature brain. Epileptic Disord. 2002;4(2):83-97.

Figura 3. Imágenes de tejido neocortical tomadas con un microscopio electrónico. A) Neurona normal. B) Neurona en proceso de muerte necrótica. C y D) Neuronas en proceso de muerte apoptótica. La barra equivale a 500 nm.

Conclusiones

Son múltiples los hallazgos en torno a la epilepsia, debido fundamentalmente a la diversidad de modelos experimentales que se utilizan y a la dificultad de reproducir fielmente todas las características de la enfermedad. Los estudios en humanos se han efectuado en diferentes localizaciones del foco epileptogénico, tiempo de evolución, tipo y edad de inicio de las crisis, entre otros aspectos. Se requieren nuevos estudios para caracterizar completamente la acción de estos mecanismos de muerte celular en los procesos convulsivos, y establecer una vía de interacción que atenúe el daño ocasionado por la epilepsia. La figura 4 resume los mecanismos de excitotoxicidad propuestos para las enfermedades neurológicas.

Las vías de señalización y la función de la excitotoxicidad se han estudiado exhaustivamente desde los años 70. Sin embargo, aún parece limitado el conocimiento sobre la excitotoxicidad en el SNC, los mecanismos moleculares y los sitios de acción. Con el fin de una intervención oportuna para retardar el desarrollo de afecciones como la epilepsia, deben ser cuidadosamente evaluados tanto la función esencial de la muerte neuronal como los mecanismos que se potencian con la sobreactivación de los receptores para glutamato en las enfermedades neurológicas. Los actuales hallazgos revelan que en la epilepsia farmacorresistente convergen procesos excitotóxicos y de muerte neuronal apoptótica y necrótica.

Reconocimientos

Agradecemos a los licenciados Leticia Neri Bazán y Héctor Vázquez Espinosa y a la Unidad de Investigación Médica en Enfermedades Neurológicas del Hospital de Especialidades, Centro Médico Nacional Siglo XXI, perteneciente al Instituto Mexicano del Seguro Social (IMSS), de México, por su estimable contribución. Los resultados de nuestro grupo de trabajo han sido financiados por el Conacyt (proyecto 98386).

Figura 4. Mecanismos de excitotoxicidad en desórdenes neurológicos como la epilepsia. Modificado de Wang y Qin [2] y Pitkanen [95]. Las flechas horizontales indican transiciones de procesos y las flechas verticales dobles indican circuitos de amplificación de los procesos desencadenantes. Los receptores de glutamato incluyen la sobreactivación del receptor N-metil-D aspartato.

36. Cherubini E, Ben-Ari Y, Krnjevic K. Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. J Neurophysiol. 1989;62(4):882-95.

37. Stafstrom CE, Holmes GL. Effects of uncontrolled seizures. Neural changes in animal models. Adv Exp Med Biol. 2002;497:171-94.

 Marks JD, Friedman JE, Haddad GG. Vulnerability of CA1 neurons to glutamate is developmentally regulated. Brain Res Dev Brain Res. 1996; 97(2):194-206.

39. Albala BJ, Moshe SL, Okada R. Kainic-acid-induced seizures: a developmental study. Brain Res. 1984;315(1): 139-48.

40. Bender R, Baram TZ. Do prolonged febrile seizures injury hippocampal neurons? Insights from animal models. In: Baram TZ, Shinnar S. editors. Febrile seizures. San Diego, Academic Press. 2002. p. 583-7.

41. Berger ML, Tremblay E, Nitecka L, Ben-Ari Y. Maturation of kainic acid seizure-brain damage syndrome in the rat. III. Postnatal development of kainic acid binding sites in the limbic system. Neuroscience. 1984;13(4):1095-104.

42. Ben-Ari Y, Tremblay E, Riche D, Ghilini G, Naquet R. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience. 1981;6(7):1361-91.

43. Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 1985;14(2):375-403.

44. Schwob JE, Fuller T, Price JL, Olney JW. Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience. 1980;5(6):991-1014. 45. Sloviter RS. The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge. C R Biol. 2005;328(2):143-53.

46. Sperk G, Lassmann H, Baran H, Seitelberger F, Hornykiewicz O. Kainic acid-induced seizures: dose-relationship of behavioural, neurochemical and histopathological changes. Brain Res. 1985;338(2):289-95.

47. Anguelova E, Smirnova T. Differential expression of small heat shock protein 27 in the rat hippocampus and septum after fimbria-fornix lesion. Neurosci Lett. 2000;280(2):99-102.

48. Valentim LM, Geyer AB, Tavares A, Cimarosti H, Worm PV, Rodnight R, et al. Effects of global cerebral ischemia and preconditioning on heat shock protein 27 immunocontent and phosphorylation in rat hippocampus. Neuroscience. 2001;107(1):43-9.

49. Planas AM, Soriano MA, Estrada A, Sanz O, Martin F, Ferrer I. The heat shock stress response ofter brain lesions: induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Prog Neurobiol. 1997;51(6):607-36.

50. Planas AM, Soriano MA, Ferrer I, Rodriguez Farre E. Kainic acid-induced heat shock protein-70, mRNA and protein expression is inhibited by MK-801 in certain rat brain regions. Eur J Neurosci. 1995;7(2):293-304.

51. Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, Kunis DM, et al. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol. 1998;44(4):584-91.

52. Pozas E, Ballabriga J, Planas AM, Ferrer I. Kainic acid-induced excitotoxicity is associated with a complex c-Fos and c-Jun response which does not preclude either cell death or survival. J Neurobiol. 1997;33(3):232-46.

53. Gass P, Herdegen T. Neuronal expression of AP1 proteins in excitotoxic neurodegenerative disorders and following nerve fiber lesions. Progr Neurobiol. 1995;47(4-5):257-90.

54. Kasof GM, Mandelzys A, Maika SD, Hammer RE, Curran T, Morgan JI. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate early gene response in c-fos-lacZ transgenic rats. J Neurosci. 1995;15(6):4238-49.

55. Chen ZL, Strickland S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell. 1997;91(7):917-25.

56. Tan Z, Levid J, Schreiber SS. Increased expression of Fas (CD95/APO-1) in adult rat brain after kainate-induced seizures. Neuroreport. 2001;12(9):1979-82.

57. Gillardon F, Wickert H, Zimmermann M. Up-regulation of bax and downregulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci Lett. 1995;192(2): 85-8.

58. Lopez E, Pozas E, Rivera R, Ferrer I. Bcl-2, Bax and Bcl-x expression following kainic acid administration at convulsant doses in the rat. Neuroscience. 1999;91(4):1461-70.

59. Gillardon F, Klimaschewski L, Wickert H, Krajewski S, Reed JC, Zimmermann M. Expression pattern of candidate cell death effector proteins Bax, Bcl-2, Bcl-X, and c-Jun in sensory and motor neurons following sciatic nerve transection in the rat. Brain Res. 1996;739(1-2):244-50.

60. Faherty CJ, Xanthoudakis S, Smeyne RJ. Caspase-3-dependent neuronal death in the hippocampus following kainic acid treatment. Brain Res. Mol Brain Res. 1999;70(1):159-63.

61. Ferrer I, Lopez E, Blanco R, Rivera R, Krupinski J, Marti E. Differential c-Fos and caspase expression following kainic acid excitotoxicity. Acta Neuropathol. 2000;99(3):245-56.

62. Henshall DC, Chen J, Simon RP. Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochem. 2000;74(3):1215-23.

63. Kienzler F, Norwood BA, Sloviter RS. Hippocampal injury, atrophy, synaptic reorganization, and epileptogenesis after perforant pathway stimulation-induced status epilepticus in the mouse. J Comp Neurol. 2009;515(2):181-96.

64. Sloviter RS, Zappone CA, Harvey BD, Frotscher M. Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: possible anatomical substrate of granule cell hyper-inhibition in chronically epileptic rats. J Comp Neurol. 2006;494(6):944-60.

65. Tauck DL, Nadler JV. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci. 1985;5(4): 1016-22.

66. Bender R, Dubé C, Baram TZ. Mossy fiber sprouting into the inner molecular layer of the dentate gyrus follows prolonged febrile seizures in immature rat model. Epilepsia. 2000;41(suppl 7): 76-9.

67. Bendotti C, Pende M, Samanin R. Expression of GAP-43 in the granule cells of rat hippocampus after seizure-induced sprouting of mossy fibres: in situ hybridization and immunocytochemical studies. Eur J Neurosci. 1994;6(4):509-15.

68. Boschert U, O'Shaughnessy C, Dickinson R, Tessari M, Bendotti C, Catsicas S, et al. Developmental and plasticity-related differential expression of two SNAP-25 isoforms in the rat brain. J Comp Neurol. 1996;367(2):177-93.

69. Geddes JW, Hess EJ, Hart RA, Kesslak JP, Cotman CW, Wilson MC. Lesions of hippocampal circuitry define synaptosomal-associated protein-25 (SNAP-25) as a novel presynaptic marker. Neuroscience. 1990;38(2):515-25.

70. Numakawa T, Matsumoto T, Numakawa Y, Richards M, Yamawaki S, Kunugi H. Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration. J Toxicol. 2011;2011:405194.

71. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons. Histol Histopathol. 2010;25(2):237-58.

72. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.

73. Fujikawa DG, Shinmei SS, Zhao S, Aviles ER, Jr. Caspase-dependent programmed cell death pathways are not activated in generalized seizure-induced neuronal death. Brain Res. 2007;1135(1):206-18. 74. Uysal H, Cevik IU, Soylemezoglu F, Elibol B, Ozdemir YG, Evrenkaya T, et al. Is the cell death in mesial temporal sclerosis apoptotic? Epilepsia. 2003;44(6): 778-84.

75. Uysal H, Cevik IU, Soylemezoglu F, Elibol B, Ozdemir YG, Evrenkaya T, et al. Is the cell death in mesial temporal sclerosis apoptotic? Epilepsia. 2003;44(6):778-84.

76. Narkilahti S, Nissinen J, Pitkanen A. Administration of caspase 3 inhibitor during and after status epilepticus in rat: effect on neuronal damage and epileptogenesis. Neuropharmacology. 2003;44(8): 1068-88.

77. Pollard H, Charriaut-Marlangue C, Cantagrel S, Represa A, Robain O, Moreau J, et al. Kainate-induced apoptotic cell death in hippocampal neurons. Neuroscience. 1994;63(1):7-18.

78. Sloviter RS, Dean E, Sollas AL, Goodman JH. Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol. 1996;366(3): 516-33.

79. Charriaut-Marlangue C, Ben-Ari Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport. 1995;7(1):61-4.

 Roy M, Hom JJ, Sapolsky RM. HSVmediated delivery of virally derived antiapoptotic genes protects the rat hippocampus from damage following excitotoxicity, but not metabolic disruption. Gene Ther. 2002;9(3):214-9.

81. Yamamoto A, Murphy N, Schindler CK, So NK, Stohr S, Taki W, *et al.* Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. J Neuropathol Exp Neurol. 2006; 65(3):217-25.

82. Schindler CK, Pearson EG, Bonner HP, So NK, Simon RP, Prehn JH, et al. Caspase-3 cleavage and nuclear localization of caspase-activated DNase in human temporal lobe epilepsy. J Cereb Blood Flow Metab. 2006;26(4):583-9.

83. Yamamoto A, Schindler CK, Murphy BM, Bellver-Estelles C, So NK, Taki W, et al. Evidence of tumor necrosis factor receptor 1 signaling in human temporal lobe epilepsy. Exp Neurol. 2006;202(2):410-20.

84. Kilany A, Raouf ER, Gaber AA, Aloush TK, Aref HA, Anwar M, *et al.* Elevated serum Bcl-2 in children with temporal lobe epilepsy. Seizure. 2012;21(4):250-3.

85. Sakhi S, Bruce A, Sun N, Tocco G, Baudry M, Schreiber SS. p53 induction is associated with neuronal damage in the central nervous system. Proc Natl Acad Sci USA. 1994;91(16):7525-9.

86. Liu H, Cao Y, Basbaum AI, Mazarati AM, Sankar R, Wasterlain CG. Resistance to excitotoxin-induced seizures and neuronal death in mice lacking the preprotachykinin A gene. Proc Natl Acad Sci USA. 1999;96(21):12096-101.

87. Lopez-Meraz ML, Wasterlain CG, Rocha LL, Allen S, Niquet J. Vulnerability of postnatal hippocampal neurons to seizures varies regionally with their maturational stage. Neurobiol Dis. 2010;37(2):394-402.

88. Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, et al. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem. 2001;77(1):220-8. 89. Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA. Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci. 1996;16(4):1337-45.

90. Zeiss CJ. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol. 2003;40(5): 481-95.

91. Schmechel DE. Apoptosis in neurodegenerative disorders. In: Hannum

Recibido en noviembre, 2011. Aceptado en agosto, 2012. YA, Boustany RM, editors. Apoptosis in neurobiology. Washington DC: CRC Press; 1999. p. 23-48.

92. Martin LJ. Neuronal cell death in nervous system development, disease, and injury (Review). Int J Mol Med. 2001;7(5): 455-78.

93. Lorigados L, Orozco S, Morales L, García I, Estupinán B, Bender JE, et al. Muerte neuronal en la neocorteza de pacientes con epilepsia del lóbulo temporal resistente a fármacos. Neurología. 2008;23(9):555-65.

94. Lopez J, Gonzalez ME, Lorigados L, Morales L, Riveron G, Bauza JY. Oxidative stress markers in surgically treated patients with refractory epilepsy. Clin Biochem. 2007;40(5-6):292-8.

95. Pitkanen A. Drug-mediated neuroprotection and antiepileptogenesis: animal data. Neurology. 2002;59(9 Suppl 5): S27-33.